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Abstract. Basing on a direct method developed by Clarkson and Kruskal, the Kadomtsev- 
Petviashvili (KP) equation has been reduced to three types of (1 + I)-dimensional partial 
differential equations which are equivalent to the three types of the similarity reduction 
equations obtained by the classical Lie approach but with different independent variables. 
Mare arbitrary functions which have been missed by the classical Lie approach have been 
included in the Solutions of the K P  equation. For instance, the third type of reduction 
obtained by the direct method can be divided into three subcases and the third type of 
solution of the KP equation obtained by the classical Lie approach is only a special case 
of one subease of our results. 

1. Introduction 

The Kadomtsev-Petviashvili equation (KPE) [ 11 

-u,~+6u~+6uu,,+u,,,+u,=O (1) 

where subscripts denote differentiations, arises in many fields of physics, particularly 
in fluid mechanics, plasma physics, gas dynamics, etc. The KPE is also of considerable 
importance in mathematics because it is one of the few equations in more than (1 + 1) 
dimensions that is completely integrable. Furthermore, this equation allows an infinite- 
dimensional Lie group of symmetries. Using the one-dimensional subalgebras of the 
symmetry algebra, David et d [ 2 ]  reduced the KPE to some partial differential equations 
(PDES) in two variables: q e  Boussinesq equation, a once-differentiated Korteweg-de 
Vries equation (KdvE) and a linear equation, respectively. We have chosen the form 
of the KPE as in [3] (for a’=+) rather than that of [2], though they are equivalent. 

By using the direct method developed by Clarkson and Kruskal [4], we have 
reduced the KPE to some ordinary differential equations (ODES) [5]. In order to exploit 
the connections between the classical Lie approach and the direct method and, to find 
all the possible symmetry reductions of the KPE, we will reduce the KPE to some (1 + 1) 
P D E ~  by the direct method. All the reductions for reducing the KPE to (1 + 1)-dimensional 
P D E ~  are found. All the reduction equations can be transformed to the results obtained 
by  the classical Lie approach but with more general inaependent variables. In other 
words, some additional arbitrary functions which are missed by the classical Lie 
approach can be included in the results obtained by the direct method. 

0305-4470/91/071455+13$03.50 0 1991 IOP Publishing Ltd 1455 
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2. Symmetry reductions of the KPE 

All the similarity solutions of the form 

u ( x , y , t ) =  U(X,Y,4w(s,? l ) )  s = Z(X, Y, t )  ? = t l ( x y Y , d  (2) 
where U, .$ and 7 are functions of the indicated variables and w(& 7) satisfies a PDE 

in two variables, 5 and 7. may be obtained by substituting (2) into ( 1 ) .  However, we 
can prove that it is sufficient to seek a similarity reduction of the KPF. in  the specia! form 

u ( x , y , t ) = a ( x , y ,  t ) + P ( X , Y ,  l )w (s (x ,Y , t ) , t l ( x , y , t ) )  ( 3 )  

rather than the most general form (2) .  
Substituting (3) into ( 1 )  yields 

YQwe~ee Yi WV,,,, + 6 ~ 2 ( w : +  W W e )  + 6Y3(w; f WW,,) + 12Y.dwsWq + WWcn) 

+ 4 ~ 5  wcsv + 4 ~ 6 W v v v f  + 6 Y ,  wcs,, f 6 YS w2 + 6 YS WWE + 6 Y ~ O W W ,  

+ Y 18% + Y 19WfC + YZOWTI + Y21 Wen = 0 

+ Y11 wCeC + Y12w~?1 Y13wESn Y14wvvf + Y l S +  Y1bw + Y17WC 

(4)  

where 
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YIS= - P a  -Pxt)r-P?rr+12axPqxf 1 2 a ~ ~ q ~ + 6 a ~ q ~ ~ + 2 p ~ q ~ + p q ~ ~  

+40xu~x f 4Px1), + Pqxxxx f 6 P x X a x  (23) 

Yla = -Pf& +6aBf: +4Pfxxxfr f 128,fXx5, +6Puf: f3$& +$5: 
~ 2 o = - P ? r ~ x  + ~ ~ P V : + ~ P V ~ J L ,  f 12i3x~x1~x + 6 P x x q :  f 3 h h +  Ptl: 

y21= -P&% -Pnfx+ 1 2 a P f ~ q ~ f 4 $ l ) , 5 ~ + 4 P f ~ ~ 1 7 r +  12P.5xxnx 

(24) 

( 2 5 )  

+ ! 2 ~ x q x x ~ x + 6 , ! 3 ~ x , , ~ ; , +  ! 2 p , ~ x ~ x - + 2 ~ ~ ; q y .  (26) 

Equation (4) is a PDE of w ( f ,  q )  in two variables only for the ratios ofthe coefficients 
of different partial derivatives and powers of w(c,  7) being functions o f f  and q. If 
f, # 0, these conditions read 

Yi = Y o r j ( t ,  7) ( i = l ,  2 , . .  . ,21) (27) 

where r;(& q) (i  = 1,2, . . . ,21) are some arbitrary functions o f f  and q to be determined 
later. In the determination of a, p, 5, q and w, there exist some freedoms without loss 
of generality: 

Remark(i): if a(x,y,  t )  has the form a =p(x,y,  f )n( f ,  q) ia , (x ,y ,  t),then wecau 
take n=O (by substituting w +  w ( 5 ,  q ) - f i ( f ,  7)). 

Remark (ii): if p(x,y, t) has the form p=pn(x ,y ,  t)n(f, q), then we can take 
n=n,=cons tan t  (by substituting w +  w ( &  q)n,/n(f, 7)). 

Remark (iii): if f =  f(c0(x, y ,  t), q) (or q = q(5, qn(x, y, t ) ) ) ,  then we can take f =  fo 
(01 rl=90) (by taking W ( t ( f n ,  7). 7) or 45, ?(5, )70) )+  w(5n, 0) or w ( 5 , d ) .  

Remark (iv): if [(x, y, t )  (or q(x, y, f ) )  is determined by an equation of the form 
O(f)=[,,(x,y, t)  (orn(q) = qn(x,y, 1 ) )  whereQ(f)(orn(q))isanyinvertiblefunction, 
then one can taken il(c)=[ ( o r a ( ? ) =  q )  (by taking f en - ' ( [ )  or q + C ' ( q ) ) .  

Irlsncl;raaay rupulrlruur Lllal C*U'l l1CF""Lll W l l l  "C I I I C U  uy usrry L ' l F  c",rcspurlurlLg 
remark once, that is to say, remarks (i) and (ii) can be used only once and remarks 
(iii) and (iv) can be used only twice (once for [ and the other for 7); more use of the 
remarks will result in loss of generality. 

Using remarks (i)-(iv) to fix the freedoms in the determination of a, p, [, q and 
w and analysing (27) carefully, we get the only possible three types of non-equivalent 

r.: :-* -....I_-& ^^^I_ '--..-A-- ... :,, I_^ ,?..-A L .... ̂  :--.L" ~ -------- _I:-_ 

sa!ntiox3 =f (27) bee appen$,x Fc: of !he de:bTatiox): 

0 ZI 
U =  - - e  z , x  f ----('1,+20'2,u+0'z2) 

(i) 6 4 2 2  (6; 6 
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and w ( 5 , q )  is determined by 

~ e e c e  + 6( wwe)e + wqn + (2215 + Z2)wev + 621 W, 

+ [ ( 3 Z ~ + Z , . ) ~ + ~ Z , Z , + f Z , , l w e + ( 6 Z ~ + 2 Z , , ) w  

= (3Z:+4Z:Z,, +;z:, +fZ,Z1,,)S2+ (fZ, ,z2, +dZ2ZI,, +dZlZ2,, 

+ fz,z,z,, + 3z:z2 +iz:z2,)5+azl,z: 

+ :z:z: + ~Z,Z2Z2, +ikz:, + &z2z2qv (31) 
where Z,(q) and Z,(q) are arbitrary functions of q and q o ( t )  and uo(l)  are any 
functions of t. 

1 
682 

U =- [ 00G + ( U 2 $  -4u3y'+ (#U, ,  +4u2u,)y+(0uo, - U : ) ]  (ii) 

(35) 

(36) 

- ?  
2 -  2(F04+ 0 , )  

and the w ( 5 ,  q) equation is 

[ w c e c + 6 ~ w e  - w ~ ] ~  + F ( ~ ) W <  +:(SF, - F 2 )  = 0 

with F( q )  being an arbitrary function of q. and 0, U , ,  U, being any functions of t. 

and a,(y, I ) .  a , ( y ,  t )  and w(y ,  t )  satisfy 

(iii) U = a2(y, f ) X 2 +  ady,  t )x+ W ( Y ,  1 )  (37) 

azYy +36a: = 0 (38) 
alyy  + 36a2al - 2a2, = 0 (39) 

wYy+12a2w+6a:-aI,=0. (40) 
The reduction equations (31), (36) and (40) can be simplified further. In order to 

simplify these reduction equations, we cannot take directly some constraints on the 
arbitrary functions that appeared in these equations because we have fixed all the 
freedoms by using all the remarks (see the appendix), except remark (iv) for 5, which 
cannot be used to fix these arbitrary functions. Nevertheless, we can simplify the 
reduction equations by some transformations of the dependent and independent 
variables, which is equivalent to the different uses of the remarks. For the sake of 
seeing this property more clearly, we discuss first the third type of similarity reductions 
of the KPE. 

For the third type of similarity reduction of the KPE, the transformations 

, .. 
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where B(y,  1 )  is determined by 

B, + 12a2B = 0 ( 4 1 ~ )  

would simplify the reduction equation (40) to 

qzz = 0 ( 4 1 4  
which possesses the same form as that of the classical Lie approach but with the 
different independent variable 2 instead of y ;  morever, some more arbitrary functions 
o f f ,  C , ( f ) ,  C2(1), Zo( f )  and another two, which would appear in the solution of (41c) 
have been introduced in the solutions of the KPE which cannot be obtained by the 
classical Lie approach. For completeness we write down all the solutions in this case. 

a,=O (42) 

ai =Ai(t)y+Ao(t) (43) 

(iiia). The first type of special solution of (38)-(40) read 

and 

u ( x ,  y ,  f )  =(A,  y + Ao)x -fA:y4+i( A, ,  - 12A,A,)y3 

+(An, -6A3y2+ K (  f ) y +  L ( f )  (44) 

where A, ( f ) ,  Ao(t) ,  K ( f )  and L ( t )  are all arbitrary functions of 1. It is worth pointing 
out that the third type of reduction ((4.1 1 )  in [2]) obtained by the classical Lie approach 
corresponds only to a special case of the solution (44) for A,  = 0. 

(iiib). The second type of special solution of (38)-(40) is 

a2= -I 6(Y +yo(1)1-2 (45) 

ai = B,(f)(y+yo(t))-’+B,( t ) (y+y~(f))~-~~yo,(y+y,(f))~’  (46) 

and 

W ( Y ,  t )  = c , ( r ) ( y  +yo)’+ c 2 ( t ) ( y  +yo)-’ - ~ B ; ( Y  + yo)-’ - ~ B : ( Y  

- 3 B o B , ( ~ + y , ) ~ + f B i y , , ( ~ + y , ) ~ - f B , , + ~ ( ~ + ~ o ) ’ + ~ y ~ r r ( y + y o )  (47) 

where y , ( f ) ,  B n ( f ) ,  E,([), C , ( t )  and C 2 ( f )  are all independent arbitrary functions of I. 

a*= -P(JBy+vdr)); 0, €!3(f)) (48) 

a ,=a , (B , ( r )+B, ( f )  j y a ; 2 ( y l ,  1) t ) d y 2 ~ Y 2 [ a b 1 ,  [ ) I t  dy,) (49) 

(iiic). The general solutions of equations (38)-(40) can be expressed by 

and the w equation is given by the linear equation (40) with a, and a, given by (48) 
and (49), where y o ( [ ) ,  g 3 ( f ) ,  B o ( f ) ,  B , ( t )  and another two integral functions of w 
equation are arbitrary functions o f f ,  and P(7; g,, g3) is the Weierstrass elliptic function 
which is defined by 

( = 4P3 - g,k, - g, 

while w(y,  f) satisfies a Lam6 equation (40) with a, and a, given by (48) and (49). 
The details of the solution of the Lam6 equation can be seen from 161. 

It is clear that the latter two subcases, (iiib) and (iiic), are all new solutions of the 
KPE which have not yet been obtained by the classical Lie approach. 



then the first type of reduction equation (31) would be simplified to the usual Boussinesq 
equation 

4zzz.z +6& f6qqz.z + q2r = 0 ( 5 2 )  
which has the same form as the reduction equation obtained by the classical Lie 
approach but with different independent variables for Z, # 0 and Z, # 0. As with the 
third type of reduction solution, two arbitrary functions Z , ( v )  and Z 2 ( q )  cannot be 
absorbed by other arbitrary functions which have been introduced by the classical Lie 
approach. For completeness one can also substitute the exact solutions of q equation 
(52 )  (such as the trivial solution q = O  and the single soliton solution) into the final 
result (28) to see that the results are quite different for Z ( i  = 1 , 2 )  being zero or not, 
but we do not do so here. 

In the second type of reduction, the transformations 

and 

would simplify the w equation (36) to the once-differentiated KdVE 

4zzr + 699, - ~ T ) Z  = 0 (53e) 
which has also the same form as that of the classical Lie approach hut with different 
independent variables, except F=0. As discussed before the other two cases, the 
constraint F = 0 (as in the classical Lie approach) will result in loss of generality and 
we do no! &CESS it f!!rther. 

In summary, all three types of the similarity reductions of the KPE obtained by the 
classical Lie approach are only special cases of the results obtained by the direct 
method. Although their final reduction equations have the same form, some more 
arbitrary functions can be introduced into the solutions of the KPE in addition to those 
introduced by the classical Lie approach. 
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In IS] and [7], we have reported all the possible one-dimensional (i.e. ODES) 

(54a) 

reductions of the KPE. For the sake of completeness we list the main results here. 
1 

(1) U(% Y, 1) = e2(Y, t)w(z) +s t (8 ,X + U,) 0 - ( 8 9  + uJ7 

and w satisfies the ODE 

d'b) d2 d 
__ dZ'4' (d"Z d Z 2  d Z  

w +6 - w +6w- W +  ( A = +  E )  - w +2Aw = - ( A z +  E)' 

where r,, rb, r, and rd are some functions of z. 
(111) u = + , y ,  O+P(X.Y. OW(t) (62) 

- Pzx + 12ffxPx +6aPxx + Wa, +PUxx +by, - P J A ( O  (63 )  

6P:+6PPxx = - P J d t )  (64) 

-a,,+6a:+6ua,+a,+a, = - P x T c ( t )  (65) 

where rA, rR and Tc are some functions of t and w(t) satisfies the ODE 

d - w+r,(t)w -re( t )w2+rc(  t )  = o 
d t  

for Ox # 0 and w( t )  is an arbitrary function of f for Ox = 0. All the possible solutions 
of the (57)-(65) have been given in [7]. 

3. Summary and discussion 

In this paper, we have obtained all the possibilities to reduce a (2f 1)-dimensional 
equation, the KPE, to some PDES in two variables. There are three types of similarity 
reductions of the KPE which are parallel to the classical Lie approach. In the first type 
of reduction, the reduction equation is a variable coefficient Boussinesq equation which 
is equivalent to the lirst type of similarity reduction, the Boussinesq equation, obtained 
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by the classical Lie approach but with different independent variables; two more 
arbitrary functions are included in the solutions of the KPE. The solutions are same as 
the results obtained by the classical Lie approach only for these two arbitrary functions 
vanishing. The second type of similarity reduction equation is a variable coefficient 
once-differentiated KdvE which can be transformed to the constant coefficient once- 
differentiated KdvE by some transformations of dependent and independent variables. 
One more arbitrary function of f is introduced into the solutions of the KPE for the 
second type of reduction ohtained by the classical Lie approach, The third type of 
similarity reduction equation is only a second-order PDE which includes three subcases. 
The third type of similarity reduction of the KPE obtained by the classical Lie approach 
is only a special case of the first subcase for the one arbitrary function o f f  taken as zero. 

In summary, in our results, additional arbitrary functions can he included in the 
similarity reductions which are missed by the classical Lie approach. How to get all 
the similarity reductions by the classical Lie approach [2! or the non-classical symmetry 
reduction method IS, 91, rather than the direct method, should be studied further. 

The one-dimensional similarity reductions (54)-(65) of the KPE can be obtained 
directly by assuming w in (3) is TJ independent or making t= TJ in (4) with (5)-(26). 
These results can also be obtained by using the direct method once again to reduce 
the (1 + 1)-dimensional PDES obtained here to ODES. 
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Appendix. The derivations of three types of reductions 

Combining (27) with i = 2 and remark (ii), one can get immediately 

s = t :  r2= i .  

TJ. = txr5(t, 7 )  

Substituting (Al) into (27) with i = 5 ,  we have 

Integrating (A2) with respect to x leads to 

_ =  r" t .fr' ,, t>r~/f/r' ., e >  ? I  t \ \  f )  ' I  - , ,,w,- 3 .I, ' I '  5\, , -  , ,", .,, ,,,- ,I, . , I  -'. 
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Due to (Al), (27) with i = 9 becomes 

(In #A =$&, v) f , .  (As) 

NC, '11- J'w( - i / ' ' r 9 ( ~ , ~ ) d t r ) d t I  

As 'I is x independent, integrating (AS) with respect to x yields 

= O(Y, t ) X + U ( Y ,  1) = Cdx, Y, 1). (A61 

Remark (iii) for etells  us that we can take 

r9(t, ? ) = a  f = f o =  O(Y, t ) X + d Y ,  1). (A71 

Substituting (Al), (A4) and (A7) into (27) with i = 19 and using the remark (i) yields 

= [o(e,x + u ~ )  - (eyx + r,9 = a. (A81 
1 

60 

According to the results (AI), (A4), (A7) and (As), we have 

r, =r, =r4= r6=r,= r8= rl0 =r,, = r,2 =rl, =r,,=o (A9) 

as well. The remaining equations in (27) read 

(Ala) - a,+6aX+6aa,+ a,+ a,, = 06r,4t, 7) 
6 0 ~ ~ , + 2 0 ~ + 2 0 0 ~ ~ = o ~ r , ~ ( e ,  '11 (All)  

-300, + 1202a,+40y( O,X+ u ~ )  + o( ~ , X + U ~ , . )  = osr,,(t, 'I) (A12) 

48,'1~+ by, = eSr& 'I) (A13) 

'I:= e4r2,(f, 'I) (A141 

- 'I# + 2( 0 , ~  + 4'1~ = e4r,, (6, 'I 1. (A19 

2 

and 

And all the freedoms have been fixed except the freedoms in remark (iv). 

further: 
To solve the remaining equations (A10)-(A15), there are two possibilities to discuss 

(A) r,,#O. In this case, (A14) can be rewritten as 

+vy[r20(~)~-1 /2= s2(Y,  t ) .  (A16) 

r20=i (A171 

wy = 0' or '7 = I' e2(y', t )  dy'+ 'I,( I )  (A18) 

Integrating (A16) with respect to y once and using remark (iv) for 7, we get 

with v,( t )  being any function of 1. 
Substituting (A18) into (A13) yields 

o, = i r d f ,  'I ) 0' = zd 7 ) e' 
i.e. TIS = 62, is an arbitrary function of 'I and independent off.  Combining the results 
of (A8) and (A19), the solution of (Al l )  reads 

rl6(f, 'I) =r16('I) =~Z:+~ZI , .  W O )  
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Since the functions 7 and 0 are x independent and the LHSS of (A12) and (A15) are 
x dependent only in the linear forms, the only possible forms of r2, and rl, are 

rZI (6, = z3( 7 )t+ z2( 7 ) (A21) 

r17(c, 7) =z4(7 )c+z5(7 ) .  (A22) 
It is quite straightforward to determine the functions Z < ( 7 )  ( i  = 2,3,4,5), and the 
results read 

and 

z3 = 2 2 ,  z4= 3z:+z,,  z5=;z,z2+;z,, (M3) 
and Z, remains free while 7, U and 0 satisfy the condition 

1 
a,=-[7,+03(2Z,u+Z2)1 20 (A241 

or 

x e v (  -1" O 2 W ,  ~ R X ~ Y ' ,  0 )  dy')] ('425) 

with uo(t) being an arbitrary function of t. 
Similarly, the only possibility for r,5 in (A10) is 

r15(t, 7 ) = z6( 7 )t2 + z,( 7 )t + z,( 7). (A26) 
Substituting (A8), (A18), (AlY), ( ' 4 2 5 )  and (A26) into (A10) and comparing the 
coefficients of x2, x and xo, we have 

azYy +36a: = S8Z6 (A27) 

a,,+36a2al =2a2 ,+  0'(2Z6u+Z,) ('428) 
and 

~ 0 , + 1 2 a 2 ~ 0 + 6 a ~ -  aI, = 06(Z,u2+Z,u+ZJ ( M Y )  

where a 2 ,  a, and a, are defined by 

a = (12x2+ a , x +  a0 

a 2 -  -%e z, 

01,' - ~ z l ( ~ ~ + 2 0 ' z l u + ~ z 2 ) + -  

(A30) 
i.e. 

(A31) 

(A32) 

1 4  2 

0t 
60 

and 

(A33) 

After some simple but tedious calculations one can get the solutions of (A27)-(A29): 

(A34) 

z,= -$Z,nZ2n-~z2z111-aZIZ21rl -~Z,Z,Z,, - 3 2 3 2  1 2 2 1 2 q  - 1 2 2 2  (A39 
2 6  = -32:-42:2,. -$z:, -fz,zl,,,, 
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and 

('436) 

Now collecting all the results we have obtained, the first type of similarity reductions 
given in section 2 follows immediately. From the derivation of this type of solution, 
we see that we have not used remark (iv) for 5; however, this remark cannot make us 
fix any functions 2, and 2,. 

3 2 2 3  z, = - az, -2: - iz,z, - ,z,z,z,, - hz:, - hZ2Z2,,. 

(B)  Tz0(C, 7)=0. in this case, (Aid) and (Ai j j  iead to 

with f being the inverse function of q ( t ) .  Because of (A38) and (AlS) we have 

0, = 0 (A391 

Combining the integration of (A40) and remark (iv) for 7 we have 

7 = j ' O ' ( t ' )  dt' r2, = -1. ( ~ 4 1 )  

In consequence of (A3Y), (A81 becomes 

( ~ 4 2 )  
1 

60 
a =>[e( O,X+ U,)+ UY']. 

Substituting (A3Y) and (A42) into ( A l l )  and (A12) yields 

r,,=o (A431 

U = U,( f )Y '+  u , ( t ) y +  V 0 ( f )  (A44) 

with 

r,,(q)= F ( 7 )  ~ z ( t )  = f [ 0 4 F ( ~ ( t ) ) + O t l  (A45) 

and u l ( f )  and u,,(t) being some arbitrary functions of 1. While (A10) yields the result 

r,,=f(fF,-F2). (A46) 

Collecting the results in this case, we get the second type of similarity reductions of 
the KPE shown by (32)-(36). In this case, we have also used remarks (i)-(iii) and (iv) 
for 7. The remaining remark (iv) for 5 cannot be used to fix F ( 7 ) ,  the arbitrary function 

(Cj in order to obtain the third type OF reduction we have to discuss the & = O  
case. In this case, we can suppose that vX = 0 at the same time, otherwise exchange of 
5 and 7 will lead to the first and the second types of reductions again. Furthermore, 
we suppose that 5, # 0 (or vY # 0), otherwise w would be a function of f only, this 
case has been given in (62)-(65). 

of 7. 
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The conditions tx = 0 and qx = 0 simplify (4) with (5)-(26) to 

Pt:wct+P7:w,,  +2PtY7PwSq + ( - P a ,  +2PY7, + P 7 v y ) w n  

+ ( -P& + 2PY5, + P5,)Wf 

+ ( -Pu + 12a$x + 64xx + 6axxP + P y y  + P x x x x )  w 

+6(P:+ P P X x ) w 2 +  (-a,x +6a:+6aaX, + a,py + axxxx) =O. ( A47 ) 

V:= t:r,(t, 7) (A48) 

vy = tvrB(c, 7) (A491 

P : + P P ~ ~  =~t:r,(c, 7) (A50) 

- P ~ ~ ~ + ~ P A + P ~ ~ ~  =~t:r , ( t ,  7)  (A51) 

- ~ ~ 7 , + 2 ~ , 7 ~ + ~ 7 ,  =Pc:r,(t, 7) (A521 

-P, ,+12a,P,+6a, ,P+6aP~~+Py~+Pxxxx =Pt:rdt, 7) (A531 

(A54) -a,, +6nx+6aaxx+ a, + a, = PttrdS, 7). 
in this case, let us consider remark (iiij at tirst from tX = 0, i.e. 5 = C(y, t ) ,  we can solve 
y explicitly, 

Y =y(5, t )  (A59  

7 = d y ,  t )=7(y ( t , t ) ,  t)-71(5, t)=71(5,7"). (A56) 

Since 6, f 0; !A47), being a PDE can be written as 

and 
2 

hence 

According to remark (iii) for 7 we have 

7 =  To= t. (A571 

And then 

5 = 5 ( y , t ) - t ( c 0 , ~ ) .  (A58) 

t = y .  (A591 

,Substituting (A57) and (A59) into (A52) and integrating it once with respect t oy  yields 

(A601 

Using remark (iii) for 5 we get 

P =P0(y, t) exp(-r&, W .  
Cembining (A601 and ('!.sa) !.ads to 

2 1 - 3 ~ .  t ) ~ & ,  t) exp(-2rE(y, t)x) = P ~ Y ,  t )  e w - r d y ,  t)x)r&, 0 .  
Equation (A61) is true for any x only for 

(A61) 

rE(y, t) = rc(y, t )  = 0. (A62) 

Now using remark (ii) for (A60) with r E = O ,  we can take 

P = P o b ,  f)= 1. (A63) 

Collecting the results obtained in this case and substituting them into the remaining 
equations of (A48)-(A54), the third type of similarity reduction of the KPE shown in 
(37)-(40) follows immediately after using remark (i)  once. 
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